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On the correct expansion of a Green function into a set of 
eigenfunctions connected with a non-Hermitian eigenvalue 
problem considered by Morse 

B J Hoenders 
Technical Physical Laboratories, State University at Groningen, Nijenborgh 18,9747 AG 
Groningen, The Netherlands 

Received 4 December 1978 

Abstract. It is shown that the analysis of Morse of a non-Hermitian eigenvalue problem, 
connected with a string with non-rigid supports, leads to an erroneous expansion of the 
Green function into a set of related eigenfunctions. The correct expansion is derived. 

1. Introduction 

The following non-Hermitian eigenvalue problem was considered by Morse and 
Feshbach (1953): ‘We suppose that a string of length 1 is under tension T and is 
supported by a rigid support at x = 0 and a non-rigid support at x = 1. This latter support 
has enough longitudinal strength to support the tension T, but it yields a little to 
transverse force imparted to it by the string. Suppose this yielding involves both friction 
and stiffness of the support for sidewise motion, so that the relation between the 
transverse force transmitted by the string, which is -T(ay/ax)l, is equal to R, times the 
transverse velocity of the support, (ay/at)l, plus K, times the displacement of the 
support y (1): 

- Tay/ax  = R,ay/at + K,Y at x = 1, (1.1) 

y = o  at x = 0. (1.2) 

If we desire to compute the free vibrations of this system directly, we find the 
eigenfunction solutions of the wave equation 

(a2/ax2 - C-2a2/at2)y = 0, 

y =[A sin(kx)+B cos(kx)] exp(-ikct), 

which have to satisfy the boundary conditions (1.1) and (1.2). They require that B be 
zero, so that 

yn = sin(k,x) exp(-ik,ct), (1.4) 
where 

- .Tk, cos(k,l) = -ik,cR, sin(k,l) + K, sin(k,l) (1.5) 
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or 

tan(k,l) = - Tk,/(K,-ik,cR,). (1.6) 

The roots k, of this transcendental equation are the eigenvalues of the system.’ 

in equilibrium, namely 
Suppose we want to determine the Green function G of the string, originally at rest 

(1.7) (a2/ax2-c-2d2/at2)G(X, XO, t )  = S(X - x o ) S ( t ) ,  

satisfying the boundary and initial conditions 

G(x, XO,  t )  = 0 ,  x =o ,  t z -0 ,  o s x o c 1 ,  (1.8) 

(Td/ax + R,d/dt + K,)G(x, xO, t )  = 0, x = l ,  t 3 0 ,  O ~ X O C l ,  (1.9) 

G(x, XO, t )  = 0 ,  t s o ,  O s x s l ,  O s x o s l ,  (1.10) 

(alat)G(x, xo, t )  = 0 ,  t s o ,  O s x s l ,  O s x o s l .  (1.11) 

We expect that G can be expanded into the set of eigenfunctions {sin(knx) exp(*ick,t)} 
and consider to this end the properties of the functions 

&(x)  = sin(k,x). (1.12) 

These functions are solutions of the equation 

(dZ/dx2+ k i )&(x)  = 0, (1.13) 

and therefore, taking two different solutions +I  and 1412 of ( l l ) ,  with numbers ki 
satisfying (1.5), integration by parts leads to 

(1.14) 

The RHS of (1.14) is not zero if k l  # k2, which shows that the eigenfunctions {&} are not 
orthogonal. Moreover, it can be shown that the roots of the equation (1.5) have a 
non-vanishing imaginary part (see the Appendix). As every Hermitian eigenvalue 
problem leads to real eigenvalues and orthogonal sets of eigenfunctions, the results 
obtained above show that equations (1.5) and (1.3) define a non-Hermitian eigenvalue 
problem. 

The non-Hermiticity of the eigenvalue problem set by equations (1.5) and (1.3) 
prevents us using the Sturm-Liouville theory, which is a special case of the theory of 
Hermitian operators. If equations (1.5) and (1.3) defines a Sturm-Liouville problem, 
the completeness and orthogonality of the set of eigenfunctions {$,,(x)}, namely 

show that the function 

(1.15) 

(1.16) 

where a denotes an arbitrary positive number, satisfies equations (1.7)-(1.11). 
The calculus of residues leads to 

G(x, XO, t )  = E  k,’rLn(x)rL:(xo) sin(wnt), o n = c k n ,  t > O .  (1.17) 
n 
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We will derive in this paper a completeness relation for the set of functions 
{sin(k,x)}, where the numbers k, are the roots of the equation (1.5). The desired 
completeness relation leads to an expansion of G in the set of modes {&,} similar to the 
expansion (1.17) for the case when the modes {q!~,,} are the solutions of a Sturm- 
Liouville problem. We will first consider the treatment of the problem given by Morse 
and Feshbach (1953). 

2. Morse solution of the problem 

The difficulties arising from the non-Hermitian character of this problem were also 
noticed by Morse and Feshbach. In order to overcome these difficulties Morse and 
Feshbach proposed the following ingenious procedure. 

First compute the Green function for a force of unit amplitude and frequency 
(2r)-'w applied at x = xo, which leads to 

and 
(d2/dx2+ k2)G(X, XO) = -T-'S(x -xo), w = ck, (2.1) 

G(O, xo) = 0, T(a/ax)G(x, xo) = (ikcR,-K,)G(x, xo), x = 1. (2.2) 
Equations (2.1) and (2.2) define an ordinary Sturm-Liouville problem because k is a 
fixed number. Standard techniques (Courant and Hilbert 1966, Morse and Feshbach 
1953) lead to 

where &(k) is the nth root of 

tan(r&) = kT/(ikcR, - K J .  (2.4) 
The function g(x, xo, t), satisfying 

(a2/ax2-c-2a2/at2)g(x, xo, r )  = S(x -xo )S( t ) ,  

is the inverse Laplace transform of G(x, xok): 

sin(rfln(k)l-'xo) sin(r&(k)l-'x) 
X exp(-ickt) dk. 

k2-r2f l i (k) l -2  

(2.5) 

The real number CY has to be chosen in such a way that the singularities of the integrand 
are situated above the line y = ia. Morse evaluates the integral (2.6) using the theorem 
of residues. However, he only considers the residues arising from the zeros of 

k -Pn(k)E-l = 0 or k +Pn(k)l-l = 0 (2.7) 
(which, considering equation (2.4), lead to the transcendental equation (1.6)), and 
neglects the possible roots of 27rPn -sin(2~@,) = 0. Moreover, the residue at a zero 
k = k, of equation (2.6) is not 

sin(knx) sin(knxo) 
2knI -sin(2knl) 

exp ( - i cknt ) , 
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as was used by Morse and Feshbach, but rather 

2ci sin(k,x) sin(k,xo) exp(-ick,r) 
T[2knl -sin(2k,l)](d/akn)(k - 7/3,(k)l-l) 

We will derive the correct expansion of the function g(x, xo, t )  in the eigenfunctions 
(1.12) in the next section. 

3. The expansion of the function g(x, xo, t )  in natural modes 

We will use the following theorem, rigorously derived by Geppert (1924), but which can 
be traced back to Cauchy (1827a, b, c) (see also Picard 1905): 

Theorem. Let a, xo and x1 denote real numbers and x and CL real variables such that 

X o < P  <XI, xo<x < X I .  (3.1) 
Suppose that the function f ( ~ )  is of bounded variation on the interval xo< CL < x1 and 
that 4 ( k )  and $(k) denote polynomials of the same degree of the complex variable k. If 
the infinite set of real numbers {c,}, n = 0, 1, 2, . . . , with c, +CO if n + cz), denote the 
radii of a set of circles in the complex k plane whose centres are situated at the origin of 
the real and imaginary axes and pass between two zeros of 

L (k j  = e x p ( a k ) r $ ( k ) - e x p ( - a k ) t + h ( k ) ,  (3.2) 
we have 

Let us change the variable k occurring in equation (1.5) into ik'. This leads to 

-iTk' cosh(k'l) = ik'cR, sinh(k'1) + iK, sinh(k'l), (3.4) 

as well as to the set of eigenfunctions {sinh(kLx)}. Let us take 

x1= I ,  

xo = -1, t+h(k') = -iTk'+ik'cR,+iK,. (3.5) 

a = I ,  4(k ' )  = iTk' + ik'cR,+ iK,, 

Assuming, as Morse did, that the roots of equation (3.4) are simple (see Nussenzveig 
(1972) for a discussion of a similar problem arising in S-matrix theory), equations 
(3.2)-(3.5) and the theorem of residues lead to 

7 (3.6) 
exp(lkL)4(kL)~'/exp kL(x*g)f (p)dP 

n L(kL) f ( * x ) = C  

where 
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Therefore 

exp(lkL)@(kL) exp(kLx) sinh(kLp) 
S(X - p )  = -2 9 O<p<L, O<X<l, (3.9) 

n L(kL) 

which is the desired completeness relation far the set of eigenmodes {sin k,x}. Inserting 

1 m+im 

G(x, xO, t )  = -- I exp(-ikct)x exp(-ilk,) r -m+ia , L(-ikn)(k2-ki) 

x c$(-ik,) exp(-ik,xo) sin(k,x) dk (3.10) 

into the wave equation shows that, using the completeness relation (3.9), G(x, xo, t )  is a 
solution of equation (1.7) satisfying the boundary and initial conditions (1.8)-( 1.1 l ) ,  if 
the real number cu is chosen such that the singularities of the integrand of (3.10) are 
situated below the line y = icu in the complex k plane. The theorem of residues leads to 

1 
G(x, xO, t )  = i 1 sin(ck,t) 

n L( -i k, ) k, 

4. 

x exp(-iZk,)c$ (-ikn) exp(-ik,xo) sin(k,x), 

G(x, XO, t )  = 0,  

t > O ,  
(3.11) 

t<0. 

Discussion 

The expansion (3.11) of the Green function in terms of the natural modes of the system 
was the aim of Morse's analysis. A related problem, connected with the completeness 
of the natural modes of an embedded dielectric sphere, as well as a survey of the 
occurrence of natural modes in physics, has been recently considered by Hoenders 
(1978). This completeness problem was analysed with the methods of Cauchy and 
Geppert. 

Though the expansion (3.11) must somehow be contained in his integral (2.6), the 
author fails to derive (3.11) from (2.6) for two reasons: 

(1) It is difficult to evaluate the possible residues generated by 27rp,(k)- 
sin(2r& (k)) = 0. 

(2) The evaluation of the integral (2.6) by the methods of contour integration leads 
to contributions from the poles of the integrand but also to contributions generated by 
the occurrence of branch points: the function (kl)* - (r&(k))* contains branch points 
because (see equation (2.4)) 

with 

f (k)  = kT/(ikCR,-K,). (4.2) 

These contributions lead to an additional difficulty for the evaluation of the integral 
(2.6). 

All these difficulties can be avoided if this boundary and'initial value problem is 
analysed by the method of Cauchy (1827a, b, c), which was extended and made more 
rigorous by Geppert (1924). This point of view is supported by the analysis of a related 
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problem connected with the completeness of the natural modes of a dielectric sphere 
embedded in an infinite dielectric medium by Hoenders (1978). The completeness 
problem is solved by the Cauchy method, and a survey of the occurrence of natural 
modes in physics in the Introduction of this paper indicates that this method 'naturally' 
solves different kinds of boundary and initial value problems arising in physics. 

Appendix 

The asymptotic behaviour of the roots k, can be determined in a more general way than 
that proposed by Morse and Feshbach (1953). Equation (1.5), 

(AI )  kT[cos(kl) -icR,T-' sin(kl)] = -Ks sin(kl), 

leads to 

cos(kl + 4) = - [ K s  cos 4 sin(kl)]/Tk (A21 

if 

tan 4 = icR,T-'. iA3) 

For large values of Jk,l we expect that k,  = (n +$).rrl-'  -4, and therefore insert 

k ,  = (n +$)TI--' - 4  + c  (A41 

into (A2). This leads to 

K ,  cos 4 sin[(n +& - 4 + E ]  
(-I)"+* sin E = - 

[ ( n + $ ) d - ' - 4 + ~ ] T  

and 

+o(+). 
K, cos 4 sin[(n + $)P - 41 

(n + + ) d - ' - d  
E = (-l), 

Combination of equations (A4) and (A6) leads to 

K, cos 4 sin[(n + &r - 41 
(n + +)TI-' - 4 k, =(n+$).rrl- '-4+(-1)" 
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